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 models in their research.

● …maybe even you?
● Massive star models (“tracks”): 

– libraries / grids, e.g. Geneva models, Bonn models…
– DIY with MESA

● Really wide range of usage:
– obtaining mass & age etc. of observed stars 
– star-formation simulations, starcluster formation studies
– chemical evolution of the Universe
– binary population synthesis → gravitational-wave event rates

It is a truth universally acknowledged, that

massive: > 8 M☉

 just 
 examples, 

 there are 
 more 

What do 
you do?
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Agrawal & Szécsi et al. (2022, MNRAS)

also see:
Martins & Palacios 2013
Jones et al. 2015
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We compare 5 sets of stellar evolutionary 
models from 5 independent projects/codes

– so that you don’t have to ;)
● PARSEC (Padova code)
● MIST (MESA code)
● Geneva code
● BPASS
● BoOST project (Bonn code)

Only comparing:

models with the same 
mass and composition*
(single stars with no or 

slow rotational rate)

*namely, Solar
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O-okay, but… why??
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Quick and dirty answer:

we don’t really 
understand 

massive star physics 
that well. (Yet.)

30 Doradus star-cluster in the 
Large Magellanic Cloud galaxy 

(VFTS survey, 2018)

They matter!

– ejecting matter in their extremely
strong stellar winds & SN explosions

→ chem.evolution of the Universe…

– forming BHs with ~40-100 M☉

→ GW-emitting mergers…



Agrawal & Szécsi et al. (2022, MNRAS)

Again… 
different, but why??

Long answer…



What is a star?



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



What is a star?

hot, dense plazma

equilibrium: pressure gradient gravity

→ ←

sur
fac

e?

→ pho
ton

s e
sca

pe

"ph
oto

sph
ere

"

What is inside?

theoreticalmodellingof the stellar
structure



Theoretical modelling of the stellar structure

Guilera+ 11
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transport of energy
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ρ
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When the equilibrium* is compromized:

the Eddington limit

* between 
gravity & radiation pressure



Credit: Stan Owocki



 Other reasons for falling out of 
 equilibrium:
● iron core 

→ gravitational collapse & SN (due to bounce-back)
● pair-instability 

→ grav. collapse & subsequent thermonuclear 
explosion (PISN) or pulsations (puls-PISN)

● end of a burning phase 

→ restructuring, crossing the Herzsprung-gap...
● ...



Consequences for the stellar interior

● density (and 
pressure) inversion in 
the envelope

● no efficient energy 
transport mechanism 
here (weak convection)

● → envelope “inflation”
● numerical difficulties...

density inversion:

ENVELOPECORE

credit: G. Gräfener

of approaching the Eddington-limit



 How do the codes deal with that?

● several “tricks” in the literature
– various codes use various tricks & methods
– cf. Agrawal & Szécsi+22 (MNRAS)

● PARSEC (‘Padova’)
● MIST (MESA)
● ‘Geneva’
● BPASS
● BoOST (‘Bonn’)

artificially enhanced mass loss at the right moment

inflated envelope & post-processing 
with ‘normal’ mass loss

MLT++ formalism  (limiting the superadiabacity*)
=changing how convection** is treated *difference between 

the isothermal and
adiabatic temperature 
gradient

**a type of internal mixing

artificially limiting the temp. gradient



Agrawal & Szécsi et al. (2022, MNRAS)



up to 18% difference!

Ionizing flux...

Agrawal & Szécsi et al. (2022, MNRAS)



Gravitational waves:
compact object mergers
(e.g. black holes)

up to 20 M☉ difference!

Remnant mass...

Agrawal & Szécsi et al. (2022, MNRAS)
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 What we learned today
 by peeking into the black box:

● Eddington limit is a thing :) 

● stellar evolution above 40 M☉ has 

 not reached consensus 
● use stellar models with extra caution, 

& be flexible for updates
● if you decide to DIY with MESA,

ask an expert before publishing
things! even better: hire one?
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 Thanks! 
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